KONVERSI LIMBAH TANDAN KOSONG KELAPA SAWIT MENJADI GLUKOSA DENGAN PROSES HIDROTERMAL TANPA MELALUI PROSES PRETREATMENT - (Conversion of Waste Palm Oil Empty Fruit Bunches into Glucose using Hydrothermal Process without Pretreatment)
Abstract
Palm oil empty fruit bunch (EFB) is a waste from palm oil industry and commonly used as compost for soil breeding. EFB could be hydrolized into glucose using hydrothermal process with hydrochloric acid as catalyst. Eight gram of EFB in particle sizes (–30+40) mesh were hydrolyzed with HCl 10% 80 mL in a tube reactor. Reaction time were 2, 3 and 4 hours in temperature range 140-240oC. EFB decomposition did not increase despite of higher temperature while reaction time influenced the process significantly. EFB conversion was 47% in 4 hours and 240oC while in 3 hours resulted 34% same with 2 hours in 210oC. EFB decomposition did not influence glucose yield which was 23% in 2 hours 170oC, 24% in 3 hours 160oC and 6% in 4 hours 150oC. The optimum conditions of conversion were 2 and 3 hours with temperature range 150-170oC.
Keywords: conversion, EFB, glucose, hydrothermal, pretreatment
ABSTRAK
Limbah tandan kosong kelapa sawit (TKKS) merupakan hasil samping dari industri minyak sawit dan terdapat dalam jumlah banyak. Sampai saat ini belum termanfaatkan dengan baik, biasanya dipakai sebagai kompos untuk pemuliaan tanah perkebunan sawit. Persentase TKKS sebesar 23% dari tandan buah segar (TBS) dengan komponen utama berupa selulosa, hemi-selulosa dan lignin. TKKS bisa dihidrolisis menjadi gula atau glukosa dengan proses hidrotermal menggunakan katalis asam klorida. TKKS seberat 8 g dengan ukuran partikel (–30+40) mesh dikonversi secara hidrotermal pada reaktor tabung dengan penambahan 80 ml HCl 10% sebagai katalis, waktu reaksi 2, 3 dan 4 jam, suhu reaksi dari 120–240oC. Proses peruraian TKKS tidak menunjukkan kenaikan yang berarti walaupun suhu reaksi semakin tinggi. Waktu reaksi memberi pengaruh yang lebih besar terhadap peruraian TKKS dimana peruraian paling tinggi sebesar 47% pada suhu 240oC dan waktu reaksi 4 jam. Pada waktu reaksi 3 jam dihasilkan peruraian TKKS paling tinggi sebesar 34%, sama dengan hasil pada waktu 2 jam dan suhu 210oC. Glukosa yang dihasilkan tidak seiring dengan TKKS yang terurai. Pada waktu reaksi 2 jam dan suhu reaksi 170oC dihasilkan glukosa sebesar 23% sedangkan pada waktu reaksi 3 jam dengan suhu reaksi 160oC dihasilkan glukosa paling tinggi 24% dan pada waktu reaksi 4 jam dengan suhu 150oC dihasilkan glukosa sebesar 6%. Kondisi terbaik untuk mendapatkan jumlah glukosa paling banyak yaitu pada waktu reaksi antara 2 dan 3 jam dengan suhu antara 150 dan 170oC.
Kata kunci: glukosa, hidrotermal, konversi, pretreatment, TKKS
Keywords
Full Text:
PDFReferences
Aiman, S. (2014). Perkembangan teknologi dan tantangan dalam riset bioetanol di Indonesia. JKTI, 16(2), 108-117.
Asli, U.A., Hamid, H., Zakaria, Z.A., Sadikin, A.N. & Rasit, R. (2013). Fermentable sugars from palm empty fruit bunch biomass for bioethanol production. International Journal of Chemical, Materials Science and Engineering, 7(12), 81-84.
Binder, J.B. & Raines, R.T. (2010). Fermentable sugars by chemicals hydrolysis of biomass. Proc.of the National Academy of sciences, 107, 4516-4521. Berkeley: University of California.
Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci., 19, 797-841.
Brownell, H.H., Yu, E.K.C. & Saddler, J.N. (1986). Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol. Bioeng., 28, 792-801.
Choudhary, T.V. & Philips, C.B. (2011). Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A. Gen., 397, 1-12.
Girisuta, B., Jansen, L.P.B.M. & Heeres, H.J. (2006). A kinetic study on the conversion of glucose to levulinic acid. Chem, Eng. Re and Desig., 84, 339-349.
Lai, D-M., Deng, L., Li, J., Liao, B., Guo, Q-X. & Fu, Y. (2011). Hydrolysis of cellulose into glucose by magnetic solid acid. Chem. Sus. Chem., 4, 55 – 58.
Liu, Y., Yuan, X-Z., Huang, H-J., Wang, X-L., Wang, H. & Zeng, G-M. (2013). Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol-water). Fuel Processing Technol., 112, 93-99.
Lyman, J.G., Reza, M.T., Vasquez, V.R. & Coronella, C.J. (2012). Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel, 99, 271-273.
Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M. & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and sustainable Energy Reviews, 27, 77-93.
Okuhara, T. (2002). Water-tolerant solid acid catalysts. Chem. Rev., 102(10), 3641-3665.
Pavlovic, I., Knez, Z. & Skerget, M. (2013). Subcritical water – a prespective reaction media for biomass processing to chemicals: study on cellulose conversion as a model for biomass. Chem. Biochem. Eng. Q., 27(1), 73-82.
Ramke, H.-G., Blohse, D. & Lehmann, H.-J. (2009). Hydrothermal carbonization of organic waste. In: Cossu,R., Diaz,L.F., Stegman, R. (edts), Twelfth International Waste Management and Landfill Symphosium. Sardina: Pro., CISA pub.
Reza, M.T. (2013). Upgrading Biomass by Hydrothermal and Chemical Conditioning. PHd Thesis, University of Nevada, Reno.
Ruiz, H.A., Rodriguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A. & Teixeira, J.A. (2013). Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, 21, 35-51.
Sasaki, M., Adschiri, T. & Arai, K. (2003). Production of cellulose II from native cellulose by near- and supercritical water solubilization. J. Agri. Food Chem., 51(18), 5376-5381.
Sarwono, R., Triwahyuni,E., Aristiawan, Y., Kurniawan, H.H. & Anindyawati, T. (2014). Cellulose conversion of oil palm empty fruit bunch (EFB) into ethanol. J. Selulosa, 4(1), 1- 6.
Smeets, E.M.W., Faaij, A.P.C., Lewandowski, I.M. & Turkenburg, W.C. (2007). A bottom-up assessment and review of global bio-energy potensials to 2050. Prog. Energ. Combust., 33, 56-106.
Subronto, M.S. (2015). Penggunaan aneka ragam kelapa sawit untuk meningkatkan nilai tambah industri kelapa sawit (I). Sawit Indonesia. Jakarta.
Tekin, K. & Karagoz, S. (2013). Non-catalytic and catalytic hydrothermal liquefaction of biomass. Res. Chem. Intermed., 39, 485-498.
Tekin, K., Karagoz, S. & Bektas, S. (2014). A review of hydrothermal processing. Renewable and sustainable Energy reviews, 40, 673-687.
Vala, R.M.K. & Tichagwa, L. (2013). Low temperature acid hydrolysis of grass-derived lignocellulose for fermentable sugars production. Cellulose Chem. Technol., 47(7-8), 565-572.
Wahyudiono, S. Machmudah & M. Goto. (2013). Utilization of sub and supercritical water reactions in resource recovery of biomass wastes. Engineering J., 17(1), 1-12.
Wang, Y-G., Nie, X-A. & Liu, Z-X. (2013). Study on preparation of levulinic acid from biomass and its prospects. J. Forest products and Industries, 2(3), 5-7.
Xiang, Q., Kim, J.S. & Lee, Y.Y. (2003). A comprehensive kinetic model for dilute acid hydrolysis cellulose. Applied Biochem. Biotechnol., 106,(1-3), 337-352.
Yokoyama, S. & Matsumura, Y. (2008). The Asian biomass handbook. Tokyo: The Japan Institute of Energy.
Zhao, H., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M. & Holladay, J.E. (2006). Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball milling study. Energy Fuels, 20(2), 807- 811.
Zhou, C-H., Xia, X., Lin, C-X., Tong, D-S. & Beltramini, J. (2011). Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 40, 5588-5617.
DOI: http://dx.doi.org/10.36974/jbi.v7i2.695
Refbacks
- There are currently no refbacks.
BIOPROPAL Industri
Published by :
Institute for Industrial Research and Standardization (Baristand Industri) in Pontianak
Agency for Industrial Research and Development, Ministry of Industry
Jl. Budi Utomo No. 41 Pontianak, West Kalimantan, Indonesia
Tel / Fax : +62 561 881393, 881533
email : biopropal.industri@gmail.com
BIOPROPAL Industri indexed in:
