PENGARUH KONSENTRASI KULIT SINGKONG DAN SUMBER NITROGEN TERHADAP PRODUKSI GLUKOAMILASE OLEH Aspergillus awamori KT-11PADA SUBMERGED FERMENTASI (Effect of Cassava Peelfor Glucoamylase Production by Aspergillus awamori KT-11 in Submerged Fermentation)
Abstract
The expensive price of glucoamylase is due to the high cost of enzyme production. Utilization biomass is expected to be an alternative raw material to reduce the cost of producing enzymes without reducing the quality of the product. Aspergillus awamori KT-11 is known to be able to produce glucoamylase by utilizing biomass waste. This study aimed to optimize glucoamylase production from A. awamori KT-11 by utilizing cassava peel as an alternative substrate with variation nitrogen source through Submerged Fermentation (SmF). Variables carry out in this study were the concentration of cassava peel (5-30%), nitrogen sources (casein hydrolyzate, yeast extract and sodium nitrate). The results showed in the concentration of cassava peels and nitrogen sources affect glucoamylase production. The optimum glucoamylase activity was 3984,935 U/L in 10% of cassava peel in medium. The other results showed different sources of nitrogen significantly influence glucoamylase production. The addition of yeast extract increased glucoamylase activity to 4617,894 U / L.
Keywords: Aspergillus awamori KT-11, glucoamylase, cassava peel, submerged fermentation (SmF)
ABSTRAK
Bahan baku yang mahal dalam produksi glukoamilase mengakibatkan harga jual glukoamilase tinggi. Pemanfaatan biomassa tinggi karbohidrat diharapkan dapat menjadi alternatif bahan baku untuk menurunkan biaya produksi enzim tanpa menurunkan kualitas dari produk yang dihasilkan. Aspergillus awamori KT-11 diketahui mampu memproduksi glukoamilase dengan memanfaatkan limbah biomassa. Tujuan penelitian ini adalah optimasi produksi glukoamilase dari A. awamori KT-11 dengan memanfaatkan limbah kulit singkong sebagai substrat alternatif dengan berbagai sumber nitrogen melalui Submerged Fermentation (SmF). Variabel yang dilakukan pada penelitian ini yaitu konsentrasi kulit singkong (5-30%), sumber nitrogen (kasein hidrolisat, yeast extract dan natrium nitrat). Hasil riset menunjukkan konsentrasi kulit singkong dan jenis sumber nitrogen mempengaruhi produksi glukoamilase. Aktivitas glukoamilase optimum diidentifikasi ketika konsentrasi substrat kulit singkong sebesar 10% yaitu 3984,935 U/L. Penambahan sumber nitrogen yang berbeda mempengaruhi produksi glukoamilase secara signifikan. Penambahan yeast extract meningkatkan aktivitas glukoamilase menjadi 4617,894 U/L.
Kata kunci: Aspergillus awamori KT-11, glukoamilase, kulit singkong, submerged fermentasi (SmF)
Keywords
Full Text:
PDFReferences
Adekunle, A., Orsat, V., & Raghavan, V. (2016). Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels. Renewable and Sustainable Energy Reviews, 64, 518–530. https://doi.org/10.1016/j.rser.2016.06.064
Adeoye, A. O., Lateef, A., & Gueguim-Kana, E. B. (2015). Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatalysis and Agricultural Biotechnology, 4(4), 568–574. https://doi.org/10.1016/j.bcab.2015.08.004
Anindyawati, T., Melliawati, R., Ito, K., Iizuka, M., & Minamiura, N. (1998). Three different types of α-amylases from Aspergillus awamori KT-11: their purifications, properties, and specificities. Bioscience, Biotechnology, and Biochemistry, 62(7), 1351–1357. https://doi.org/10.1271/bbb.62.1351
Anto, H., Trivedi, U. B., & Patel, K. C. (2006). Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresource Technology, 97(10), 1161–1166. https://doi.org/10.1016/j.biortech.2005.05.007
Balagopalan, C., Padmaja, G., Nanda, S. K., & Moorthy, S. N. (2018). Cassava in food, feed and industry. In Cassava in Food, Feed and Industry. https://doi.org/10.1201/9781351070430
Bayitse, R., Hou, X., Bjerre, A.-B., Saalia, F. K., Arantes, V., Saddler, J., Attahdaniel, B., Adeeyinwo, C., Adetunji, A., Olusunle, S., Adewoye, O., Bokanga, M., Bommarius, A., Katona, A., Cheben, S., Patel, A., Ragauskas, A., Knudson, K., Pu, Y., … Wang, C. (2015). Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars. AMB Express, 5(1), 60. https://doi.org/10.1186/s13568-015-0146-z
Bruinenberg, P. M., Van Dijken, J. P., & Scheffers, W. A. (1983). A theoretical analysis of NADPH production and consumption in yeasts. Journal of General Microbiology, 129(4), 953–964. https://doi.org/10.1099/00221287-129-4-953
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/https://doi.org/10.1021/ac60111a017
Fujio, Y., & Morita, H. (1996). Improved glucoamylase production by Rhizopus sp. A-11 using metal-ion supplemented liquid medium. Journal of Fermentation and Bioengineering, 82(6), 554–557. https://doi.org/10.1016/S0922-338X(97)81251-2
Hull, P. (2010). Glucose Syrups: Technology and Applications. In Glucose Syrups: Technology and Applications. https://doi.org/10.1002/9781444314748
Kusumayanti, H., Handayani, N. A., & Santosa, H. (2015). Swelling Power and Water Solubility of Cassava and Sweet Potatoes Flour. Procedia Environmental Sciences, 23(Ictcred 2014), 164–167. https://doi.org/10.1016/j.proenv.2015.01.025
Luo, H., Liu, H., He, Z., Zhou, C., & Shi, Z. (2015). Efficient and cost-reduced glucoamylase fed-batch production with alternative carbon sources. Journal of Microbiology and Biotechnology, 25(2), 185–195. https://doi.org/10.4014/jmb.1406.06030
Malakar, S., Paul, S. K., & Jolvis Pou, K. R. (2020). Biotechnological Interventions in Beverage Production. In Biotechnological Progress and Beverage Consumption. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816678-9.00001-1
Matsubara, T., Ben Ammar, Y., Anindyawati, T., Yamamoto, S., Ito, K., Iizuka, M., & Minamiura, N. (2004). Degradation of raw starch granules by α-amylase purified from culture of Aspergillus awamori KT-11. Journal of Biochemistry and Molecular Bology, 37(4), 422–428. https://doi.org/10.5483/BMBRep.2004.37.4.422
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch/Staerke, 54(12), 559–592. https://doi.org/10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-F
Najafpour, G. (2015). Biochemical engineering and biotechnology. Elsevier.
Otache, M., Ubwa, S., & Godwin, A. (2017). Proximate Analysis and Mineral Composition of Peels of Three Sweet Cassava Cultivars. Asian Journal of Physical and Chemical Sciences, 3(4), 1–10. https://doi.org/10.9734/AJOPACS/2017/36502
Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31(July 2016), 135–152. https://doi.org/10.1042/BA19990073
Pedersen, H., & Nielsen, J. (2000). The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Applied Microbiology and Biotechnology, 53(3), 278–281. https://doi.org/10.1007/s002530050021
Perwitasari, U., Nuryati, N., Melliawati, R., & Yopi, Y. (2018). Glucoamylase Production by Aspergillus awamori KT-11 In Solid State Fermentation Using Cassava Peel as Substrate. Annales Bogorienses, 21(1), 21. https://doi.org/10.14203/ann.bogor.2017.v21.n1.21-28
Rodrigues, É. F., Ficanha, A. M. M., Dallago, R. M., Treichel, H., Reinehr, C. O., Machado, T. P., Nunes, G. B., & Colla, L. M. (2017). Production and purification of amylolytic enzymes for saccharification of microalgal biomass. Bioresource Technology, 225, 134–141. https://doi.org/10.1016/j.biortech.2016.11.047
Saavedra-Leos, Z., Leyva-Porras, C., Araujo-Díaz, S. B., Toxqui-Terán, A., & Borrás-Enríquez, A. J. (2015). Technological application of maltodextrins according to the degree of polymerization. Molecules, 20(12), 21067–21081. https://doi.org/10.3390/molecules201219746
Sani, A., Awe, F. A., & Akinyanju, J. A. (1992). Amylase Synthesis in Aspergillus-Flavus and Aspergillus-Niger Grown on Cassava Peel. Journal of Industrial Microbiology, 10(1), 55–59.
Sindhu, R., Binod, P., & Pandey, A. (2016). α-Amylases. Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products, 3–24. https://doi.org/10.1016/B978-0-444-63662-1.00001-4
Somogyi, M. (1952). Notes on Sugar Determination. Journal of Biological Chemistry, 19–24.
Souto, L. R. F., Caliari, M., Soares Júnior, M. S., Fiorda, F. A., & Garcia, M. C. (2017). Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis. Food Science and Technology, 37(1), 19–24. https://doi.org/10.1590/1678-457X.0023
Sundarram, A., & Krishna Murthy, T. P. (2014). α-Amylase Production and Applications: A Review. Journal of Applied & Environmental Microbiology, 2(4), 166–175. https://doi.org/10.12691/jaem-2-4-10
Takeiti, C. Y., Kieckbusch, T. G., & Collares-Queiroz, F. P. (2010). Morphological and physicochemical characterization of commercial maltodextrins with different degrees of dextrose-equivalent. International Journal of Food Properties, 13(2), 411–425. https://doi.org/10.1080/10942910802181024
Ubalua, A. O. (2014). Sweet Potato Starch as a Carbon Source for Growth and Glucoamylase Production from Aspergillus niger. September, 788–795.
Uçkun Kiran, E., Trzcinski, A. P., & Liu, Y. (2014). Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste. Biofuel Research Journal Biofuel Research Journal Biofuel Research Journal, 3(3), 98–105.
Wang, Q., Wang, X., Wang, X., & Ma, H. (2008). Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochemistry, 43(3), 280–286. https://doi.org/10.1016/j.procbio.2007.12.010
Widiharih, T. (2001). Analisis ragam multivariat untuk rancangan acak lengkap dengan pengamatan berulang. Jurnal matematika dan komputer, 4(3), 139–150.
Woiciechowski, A. L., Nitsche, S., Pandey, A., & Soccol, C. R. (2002). Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: An economic study. Brazilian Archives of Biology and Technology, 45(3), 393–400. https://doi.org/10.1016/j.biortech.2007.07.028
Zhao, W., Nie, Y., Mu, X., Zhang, R., & Xu, Y. (2015). Enhancement of glucose production from maltodextrin hydrolysis by optimisation of saccharification process using mixed enzymes involving novel pullulanase. International Journal of Food Science and Technology, 50(12), 2672–2681. https://doi.org/10.1111/ijfs.12939
DOI: http://dx.doi.org/10.36974/jbi.v11i2.6079
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
BIOPROPAL Industri
Published by :
Institute for Industrial Research and Standardization (Baristand Industri) in Pontianak
Agency for Industrial Research and Development, Ministry of Industry
Jl. Budi Utomo No. 41 Pontianak, West Kalimantan, Indonesia
Tel / Fax : +62 561 881393, 881533
email : biopropal.industri@gmail.com
BIOPROPAL Industri indexed in:
