Swastika Praharyawan, Silviredeta Anindya Putri


Flocculation is a feasible method for harvesting microalgae due to its lower cost. This research aims to optimize the flocculation efficiency in harvesting biodiesel-producing microalgae. Flocculation process was conducted towards microalgae cell suspension on 0.2-1 g/L range concentration by applying magnesium ions (1 until 5 mM) at alkaline condition (pH 9-12) in 30 and 60 minutes using neutralization and sweeping. The result showed that magnesium ion concentration, pH value and biomass concentration had significant effect on the efficiency of microalgae cells flocculation, while flocculation time did not show significant effect. Flocculation efficiency increased when magnesium ion concentration was 4 mM and started at pH 10 for microalgae culture with high biomass concentration and at pH 11.5 for low biomass concentration, while optimum pH for both culture was 11.75. Flocculation efficiency for microalgae with high concentration of biomass at optimum condition was 94.89% while for the low one was 89.75%.

Keywords: flocculation, flocculation efficiency, magnesium ions, microalgae


Mikroalga berpotensi sebagai bahan baku biodiesel. Metode flokulasi layak untuk diterapkan pada pemanenan mikroalga karena berbiaya rendah. Penelitian ini bertujuan untuk mengoptimasi efisiensi flokulasi pada proses pemanenan mikroalga lokal potensial penghasil biodiesel yang menggunakan metode otoflokulasi di bawah pengaruh nilai pH, konsentrasi ion magnesium, konsentrasi biomassa dan waktu flokulasi. Proses flokulasi dilakukan pada suspensi sel mikroalga konsentrasi 0,2 hingga 1 g/L dengan menggunakan ion magnesium (1 hingga 5 mM) pada suasana basa (pH 9-12) selama waktu tertentu (30 dan 60 menit) melalui mekanisme netralisasi muatan dan penyapuan (sweeping). Hasil penelitian menunjukkan bahwa konsentrasi ion magnesium, nilai pH dan konsentrasi biomassa memberikan pengaruh yang signifikan terhadap efisiensi flokulasi sel-sel mikroalga sedangkan waktu flokulasi tidak menunjukkan pengaruh signifikan. Efisiensi flokulasi meningkat secara signifikan pada konsentrasi ion magnesium hingga 4 mM dan dimulai pada pH 10 untuk kultur mikroalga dengan konsentrasi biomassa tinggi (1 g/L) dan pada pH 11,5 untuk kultur dengan konsentrasi biomassa rendah (0,2 g/L) sedangkan pH optimum untuk kedua kultur adalah 11,75. Nilai efisiensi flokulasi untuk kultur mikroalga dengan konsentrasi biomassa tinggi pada kondisi optimum mencapai 94,89%, sementara nilai efisiensi flokulasi untuk kultur dengan konsentrasi biomassa rendah adalah 89,75%.

Kata kunci: efisiensi flokulasi, flokulasi, ion magnesium, mikroalga


flocculation; flocculation efficiency; magnesium ions; microalgae

Full Text:



Chen, Y., Li, X., Sun, Z. & Zhou, Z. (2017). Isolation and identification of Choricystic minor Fott and mass cultivation for oil production. Algal Research, 25, 142-148.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.

Christenson, L. & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts. Biotechnology Advances, 29, 686-702.

Folkman, Y. & Wachs, A.M. (1973). Removal of algae from stabilization pond effluents by lime treatment. Water Research, 7, 419-435.

Garcia-Perez, J.S., Beuckels, A., Vandamme, D., Depraetere, O., Foubert, I., Parra, R. & Muylaert, K. (2014). Influence of magnesium concentration, biomass concentration and pH on flocculation of Chlorella vulgaris. Algal Research, 3, 24-29.

He, Q., Yang, H. & Hu, C. (2016). Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with raceway pond. Bioresource Technology, 218, 571-579.

Islam, M.A., Brown, R.J., Brooks, P.R., Jahirul, M.I., Bockhorn, H. & Heimann, K. (2015). Investigation of the effects of the fatty acid profileon fuel properties using a multi-criteri decision analysis. Energy Conversion and Management, 98, 340-347.

Labbe, J.I., Ramos-Suarez, J.L., Hernandez-Perez, A., Baeza, A. & Hansen, F. (2017). Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation. Journal of Environmental Chemical Engineering, 5, 635-643.

Li, S., Xu, J., Chen, J., Chen, J., Zhou, C. & Yan, X. (2014). The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture, 428-429, 104-110.

Mata, T.M., Martins, A.A. & Caetano, N.S. (2010). Microalgae for biodiesel and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217-232.

Menezes, R.S., Soares, A.T., Junior, J.G.M., Lopes, R.G., da Arantes, R.F., Derner, R.B. & Filho, N.R.A. (2016). Culture medium influence on growth, fatty acid and pigment composition of Choricystis minor var. minor: a suitable microalga for biodiesel production. Journal of Applied Phycology, 28, 2679-2686.

Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., de Souza, C.O., Vich, D.V., de Carvalho, G.C. & Nascimento, M.A. (2013). Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Research, 6, 1-13.

Praharyawan, S., Rahman, D.Y. & Susilaningsih, D. (2016). Characterization of lipid productivity and fatty acid profile of three fast-growing microalgae isolated from Bengkulu for possible use in health application. Journal of Tropical Life Science, 6(2), 79-85.

Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S. & Gressel, J. (2012). Inexpensive non-toxic flocculation of microalgae contradicts theories: overcoming a major hurdle to bulk algal production. Biotechnology Advances, 30, 1023-1030.

Shelef, G., Sukenik, A. & Green, M. (1984). Microalgae harvesting and processing: a literature review. SERI/STR-231-2396. Golden Colorado: Solar Energy Research Institute.

Smith, B.T. & Davis, R.H. (2012). Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Research, 1, 32-39.

Tsolcha, O.N., Tekerlekopoulou, A.G., Akratos, C.S., Bellou, S., Aggelis, G., Katsiapi, M., Moustaka-Gouni, M. & Vayenas, D.V. (2015). Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production. Journal of Chemical Technology and Biotechnology, 91, 2349-2359.

Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B. & Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114-119.

Vandamme, D., Foubert, I. & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31(4), 233-239.

Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. & Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 110, 496-502.

DOI: http://dx.doi.org/10.36974/jbi.v8i2.3300


  • There are currently no refbacks.


Published by :

Institute for Industrial Research and Standardization (Baristand Industri) in Pontianak

Agency for Industrial Research and Development, Ministry of Industry 

Jl. Budi Utomo No. 41 Pontianak, West Kalimantan, Indonesia

Tel / Fax : +62 561 881393, 881533

email      : biopropal.industri@gmail.com


BIOPROPAL Industri indexed in: 

Hasil gambar untuk gambar doajHasil gambar untuk gambar google scholar

RJI Main logo