Pengaruh Variasi Konsentrasi Inulin pada Proses Fermentasi oleh L. acidophilus, L. bulgaricus dan S. thermophillus - (The Inulin Variation Concentration Effect in Fermentation Using L. acidophilus, L. bulgaricus and S. thermophilus)

Raden Haryo Bimo Setiarto, Nunuk Widhyastuti, Iwan Saskiawan, Rina Marita Safitri

Abstract


Prebiotics are food components that can not enzymatically digested, thus it fermented by probiotic bacteria. Inulin is a prebiotic source that widely used in processed food products such as fermented milk. This study aimed to know the variation concentrations effect of prebiotic inulin on the growth of lactic acid bacteria starter yogurt (Lactobacillus acidophillus, Lactobacillus bulgaricus, Streptococcus thermophillus). The growth of those lactic acid bacteries was determined based on OD (Optical Density), Total Plate Count (TPC), total lactic acid content and pH. Inulin concentration of 0.5% (w/v) increased the growth of those three bacteries. Reductioned of pH value during inulin fermentation indicated the growth of bacteria that produced lactic acid. L.bulgaricus and S.thermophilus growth rate were more sensitive than L.acidophilus in addition of prebiotic inulin concentration. The growth of those bacteries in MRSB medium supplemented inulin decreased pH around 7.00 into below 5.00 due to organic acids formation.

Keywords: Fermentation, Inulin, L.acidophilus, L.bulgaricus, S.thermophilus



ABSTRAK

Prebiotik adalah komponen bahan pangan yang tidak dapat dicerna oleh saluran pencernaan secara enzimatis sehingga akan difermentasi oleh bakteri probiotik di usus besar. Inulin merupakan salah satu sumber prebiotik yang banyak dimanfaatkan dalam produk pangan olahan seperti susu fermentasi. Pemberian inulin pada kadar tertentu perlu diketahui untuk mengetahui jumlah optimal yang diperlukan untuk menjaga kesehatan. Penelitian ini bertujuan untuk mengetahui pengaruh variasi konsentrasi prebiotik inulin terhadap pertumbuhan bakteri asam laktat starter yogurt (Lactobacillus acidophillus, Lactobacillus bulgaricus dan Streptococcus thermophillus). Pengamatan pertumbuhan L. acidophilus, L. bulgaricus dan S. thermophillus dilakukan dengan beberapa cara antara lain perhitungan total sel dengan menggunakan prinsip turbidimetrik OD (Optical Density),  jumlah total koloni dengan Total Plate Count (TPC), analisis kadar total asam laktat tertitrasi dan pengukuran pH. Konsentrasi inulin 0,5% (b/v) mampu meningkatkan pertumbuhan L. acidophilus, L.bulgaricus dan S. thermophilus secara signifikan dibandingkan perlakuan lainnya. Penurunan nilai pH selama fermentasi inulin mengindikasikan pertumbuhan bakteri penghasil asam laktat. L. acidophilus mengalami fase eksponensial pertumbuhannya mulai dari masa inkubasi jam ke-6 hingga jam ke-24. Sementara itu L. bulgaricus dan S. thermophilus mengalami fase eksponensial pertumbuhannya mulai dari masa inkubasi jam ke-6 hingga jam ke-18. Laju pertumbuhan L. bulgaricus dan S. thermophilus lebih sensitif terhadap penambahan konsentrasi prebiotik inulin jika dibandingkan dengan L. acidophilus. Selama pertumbuhan L. acidophilus, L.bulgaricus dan S. thermophilus dalam media MRSB yang disuplementasi inulin terjadi penurunan nilai pH dari kisaran 7,00 menjadi di bawah 5,00 karena pembentukan asam-asam organik.

Kata kunci: Fermentasi, Inulin, L.acidophilus, L.bulgaricus, S.thermophilus


Keywords


Fermentation; Inulin; L.acidophilus; L.bulgaricus; S.thermophilus

Full Text:

PDF

References


Adebola, O.O., Corcoran, O. & Morgan, W.A. (2014). Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. Journal of Functional Foods, 10, 75–84.

Akin, M.B., Akin, M.S. & Kirmaci, Z. (2007). Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice cream. Food Chemistry, 104, 93–99.

Al-Sheraji, S.H., Ismaila, A., Manap, M.Y., Mustafa, S., Yusof, R.M. & Hassan, F.A. (2013). Prebiotics as functional foods: A review. Journal of Functional Foods, 5, 1542 –1553.

Alvarez-Olmos, M.I. & Oberhelman, R.A. (2001). Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clinical Infectious Diseases, 32, 1567–1576.

Alves, L.L., Richards, N.S.P.S., Mattanna,P., Andrade, D.F., Rezer, A.P.S. & Milani, L.I.G. (2013). Cream cheese as a symbiotic food carrier using Bifidobacterium animalis Bb-12 and Lactobacillus acidophilus La-5 and inulin. International Journal of Dairy Technology, 66, 63–69.

Anderssen, E.L., Diep, D.B., Nes, I.F., Eijsink, V.G.H. & Nissen-Meyer, J. (1998). Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Applied and Environmental Microbiology, 64, 2269–2272.

Apajalahti, J.H., Kettunen, H., Kettunen, A., Holben, W.E., Nurminen, P.H., Rautonen, N. & Mutanen, M. (2002). Culture independent microbial community analysis reveals that insulin in the diet primarily affects previously unknown bacteria in the mouse cecum. Applied and Environ mental Microbiology, 68: 4986–4995.

Buriti, F.C.A., Cardarelli, H.R., Filisetti, T.M.C.C. & Saad, S.M.I. (2007). Symbiotic potential of fresh cream cheese supplemented with inulin and Lactobacillus paracasei in co-culture with Streptococcus thermophilus. Food Chemistry, 104, 1605–1610.

Cardarelli, H.R., Buriti, F.C.A., Castro, I.A. & Saad, S.M.I. (2008). Inulin andoligofructose improve sensory quality and increase the probiotic viable countin potentially symbiotic petit-suisse cheese. LWT – Food Science and Technology, 41, 1037–1046.

Cummings, J. H., Macfarlane, G. T. & Englyst, H. N. (2001). Prebiotic digestion and fermentation. American Journal of Clinical Nutrition, 73, 415–420.

Cycroft, C.E., Jones, M.R., Gibson, G.R. & Rostall, R.A. (2001). A Comparative In Vitro Evaluation on the Fermentation properties of Prebiotic Oligosaccharides. Journal of Aplied Microbiology, 91, 878–897.

Diez-Gonzalez, F., Bond, D.R., Jennings, E. & Russell, J.B. (1999). Alternativeschemes of butyrate production in Butyrivibriofibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Archives of Microbiology, 171, 324–330.

Djaafar, T.F., Rahayu, E.S., Wibowo & Sudarmadji. (1996). Substansi Antimikroba Bakteri Asam Laktat yang Diisolasi dari Makanan Hasil Fermentasi Tradisional Indonesia. Jurnal Pertanian Indonesia, 1, 15–21.

Duncan, S.H., Barcenilla, A., Stewart, C.S., Pryde, S.E. & Flint, H.J. (2002). Acetateutilization and butyryl-coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology, 68, 5186–5190.

Duncan, S.H. & Flint, H.J. (2013). Probiotics and prebiotics and health in ageing populations. Maturitas, 75(1), 44–50.

Duncan, S., Louis, P. & Flint, H.J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology, 70, 5810–5817.

Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D. & De Vuyst, L. (2009). In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Applied and Environmental Microbiology, 75, 454–461.

Gibson, G.R. & Roberfroid, M.B. (1995). Dietary modulation of human colonic microbiota: introducing the concept of prebiotics. J Nutrition, 125(6), 1401-1412.

Grimoud, J., Durand, H., Courtin, C., Monsan, P., Ouarné, F., Theodorou, V. & Roques, C. (2010). In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics. Anaerobe, 16, 493–500.

Guamer, F. & Malagelada J.R. (2003). Gut flora in health and disease. European Nutrition Research, 361 (9356), 512-519.

Huebner, J.,Wehling, R.L. & Hutkins, R.W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17, 770–775.

Karimi, R., Azizi, M.H., Ghasemlouc, M. & Vaziri, M. (2015). Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers, 119, 85–100.

Lopes, S.M.S., Francisco, M.G., Higashi, B., de Almeida, R.T.R., Krausová, G., Pilau, E.J., Goncalves, J.E., Goncalves, R.A.C. & de Oliveira, A.J.B. (2016). Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots andin vitro adventitious root cultures. Carbohydrate Polymers, 152, 718–725.

Louis, P., Duncan, S.H., McCrae, S.I., Millar, J., Jackson, M.S. & Flint, H.J. (2004). Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. Journal of Bacteriology, 186, 2099–2106.

Macfarlane, G.T. & Cumming, J.H. (1999). Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health. Br. Med. J., 318, 999–1003.

Machado, M.T.C., Kaliana, S.E., Vieira, G.S., Menegalli, F.C., Martínez, J. & Hubinger, M.D. (2015). Prebiotic oligosaccharides from artichoke industrial waste: evaluation of different extraction methods. Industrial Crops and Products, 76, 141–148.

Makras, L., Van Acker, G. & De Vuyst, L. (2005). Lactobacillus paracasei subsp.paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Applied and Environmental Microbiology, 71, 6531–6537.

Modzelewska-Kapituła, M., Kł˛ebukowska, L. & Kornacki, K. (2007). Influence ofinulin and potentially probiotic Lactobacillus plantarum strain on microbiological quality and sensory properties of soft cheese. Polish Journal of Food and Nutrition Sciences, 57, 143–146.

Murphy, O. (2001). Non-polyol low-digestible carbohydrates: Food applications and functional benefits. British Journal of Nutrition, 85(1), 547–553.

Naruszewicz, M., Johansson, M.L., Zapolska-Downar, D. & Bukowska, H. (2002). Effect of Lactobaillus plantarum on cardivascular disease risk factors in smokers. American Journal of Clinical Nutrition, 76, 1249–1255.

Pereira, D.I.A., McCartney, A.L. & Gibson, G.R. (2003). An in vitro study of the probiotic potential of a bile-salt-hydolysing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. J. Applied and Environmental Microbiology, 69, 4743–4752.

Pokusaeva, K., Fitzgerald, G.F. & van Sinderen, D. (2011). Carbohydrate metabolismin bifidobacteria. Genes & Nutrition, 6, 285–306.

Roberfroid, M.B. (2007). Prebiotic: the concept revisited. The Jorunal of Nutrition, 137, 830-837.

Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A. & Zanoni, S. (2005). Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Applied and Environmental Microbiology, 71, 6150–6158.

Rodrigues, D., Rocha-Santos, T.A.P., Pereira, C.I., Gomes, A.M., Malcata, F.X. & Freitas, A.C. (2011). The potential effect of FOS and inulin upon probiotic bacteriumperformance in curdled milk matrices. LWT–Food Science and Technology, 44, 100–108.

Russell, W.R., Duncan, S.H. & Flint, H.J. (2013). The gut microbial metabolome: Modulation of cancer risk in obese individuals. The Proceedings of the Nutrition Society, 72, 177–188.

Salem, M.M.E., Abd El-Gawad, M.A.M., Hassan, F.A.M. & Effat, B.A. (2007). Useof symbiotics for the production of functional low-fat Labneh. Polish Journal of Food and Nutrition Sciences, 57, 151–159.

Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B. & Pessi, G. (2002).The genome sequence of Bifidobacterium longum reflects its adaptation to thehuman gastrointestinal tract. Proceedings of the National Academy of Sciences ofthe United States of America, 99(22), 14422–14427.

Su, P., Henriksson, A. & Mitchell, H. (2007). Selected prebiotics support the growth of probiotic monocultures in vitro. Anaerobe, 13, 134–139.

Topping, D.L. & Clifton, P.M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81, 1031–1064.

Van Loo, J. (2004). The specificity of the interaction with intestinal bacterial fermentation by prebiotic determine their physiological efficacy. Nutrition Research Reviews, 17, 89–98.

Wang, X. & Gibson, G.R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol., 75, 373–380.


Refbacks

  • There are currently no refbacks.


BIOPROPAL Industri

Published by :

Institute for Industrial Research and Standardization (Baristand Industri) in Pontianak

Agency for Industrial Research and Development, Ministry of Industry 

Jl. Budi Utomo No. 41 Pontianak, West Kalimantan, Indonesia

Tel / Fax : +62 561 881393, 881533

email      : biopropal.industri@gmail.com

 

BIOPROPAL Industri indexed in: 

Hasil gambar untuk gambar doajHasil gambar untuk gambar google scholar